MARK SCHEME for the October/November 2012 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Page 2 Mark Scheme		Paper
	IGCSE – October/November 2012	0580	22

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working

Qu.	Answers	Mark	Part Marks
1	(a) 8000 cao	1	
	(b) 0.08 cao	1	
2	1.4 cao	2	M1 1.44() or 1.45
3	$\frac{3}{118.75}$ or $118\frac{4}{4}$ cao		M1 $3(20)^2 + 8(20)(-5) + 3(-5)^2$ or better
4	60	2	M1 360 ÷ 6
5	96	2	M1 72 / 0.75 oe or M1 $0.75x = 72$ oe
6	(a) 4	1	
	(b) 2	1	
	(c) 1 cao	1	
7	2.119×10^8 cao	3	M1 81500 oe M1 their LB × 2600
8	113000 or 112795 to 112840	3	B1 for 85000 M1 for $\pi \times 0.65^2 \times \text{figs 85}$
9	(a) 5 30 pm	1	
	(b) 67	2	M1 for 10h45min and 3h 15min oe seen
10	3.4 or $3\frac{2}{5}$	3	$ \mathbf{M1} \ 22 - 6x \\ \mathbf{M1} \ 4x + 6x = 22 + 12 $
11	11, 13, 17, 19, 23	3	B2 3 or 4 correct or B1 2 correct If B0 then M1 for <i>x</i> >10.5 and M1 for <i>x</i> < 26.5 or M1 for 10.5 and 26.5 seen
12	12 by 30 by 42	3	B1 for $10 \times 25 \times 35$ or 8750 M1 $\sqrt[3]{\frac{15120}{8750}}$ (= 1.2)

	Page 3	Mark Scheme		or 2012	Syllabus	Paper 22			
	IGCSE – October/November 2012 0580 22								
13	686		3	M1 $m = k L^3$ A1 $k = 2$					
14	(a) $p = \frac{3}{8}$ $q = \frac{1}{2}$			B2 $p = \frac{9}{64}$ and $q = \frac{1}{4}$ or B1 $p = \frac{3}{8}$ $q \neq \frac{1}{2}$					
	(b) $k = 6$		2	M1 for a correct statement for k e.g. $\frac{5^{-3} + 5^{-4}}{5^{-4}}$ or for					
				the factorisation $5^{-4}(5+1) = k \times 5^{-4}$ or					
				$\frac{1}{625}(5+1) = \frac{k}{625}$					
15	(a) 3		1						
	(b) 637.5		3	M1 finding area under graph M1dep all correct area statements					
16	(a) Points plo	otted correctly	2	B1 6 or 7 points correct					
	(b) Positive		1						
	(c) Line of b	est fit ruled	1						
17	(a) Shear x as	xis invariant sf 3	3	B1 shear B1 <i>x</i> axis invariant oe B1 3					
	(b) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$		2	$\mathbf{M1} \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \mathbf{k} \neq 0 \text{ or } \mathbf{k} \neq 1$					
18	trapezium at (- (-3, -2) www	-2, -1),(-4, -1), (-4, -2),	5	SC4 for correct co-ordinates or vectors or matrix seen with no diagram or with an incorrect diagram. SC3 for correct diagram with wrong working or one other incorrect trapezium which is not part of a correct method. If 0 then B2 for $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ or M1ft "BA" $\begin{pmatrix} 2 & 4 & 4 & 3 \\ 1 & 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} -2 & -4 & -4 & -3 \\ -1 & -1 & -2 & -2 \end{pmatrix}$ A1ft					
19	(a) 5		2	$\mathbf{M1} \ \mathbf{f}(2) = \mathbf{seer}$	1				
	(b) $3x^2 + 1$		3	M1 $9x^2 + 1$ M	M1 ("9 x^2 + 1" + 2)/	3 seen			
	(c) $3x-2$		2	M1 for $3y = x$	+2 or $x = \frac{y+2}{3}$				
20	(a) 10		2	M1 $x = -4$ and	x = 6 seen				
	(b) $y = -4x +$	5 oe	2	•	$(m \neq 0)$ or $y = -4x +$	$k \ (k \neq 0)$			
	(c) $y = -4x +$	24 oe	3	or $y = -4x + 5$ M1 $m = -4$ or gradient = -4 or $y = -4x + c$ M1 (5, 4) substituted into $y = mx + c$					